Публикации | / | Статьи в рецензируемых изданиях за рубежом |
Последние публикации: |
|
Emi Kinoshita, Alexei V. Abramov, Vyacheslav A.
Soloviev, Alexander P. Saveljev, Yoshinori Nishita, Yayoi Kaneko, Ryuichi
Masuda Hybridization between the European and Asian badgers (Meles, Carnivora)
in the Volga-Kama region, revealed by analyses of maternally, paternally and
biparentally inherited genes // Mammalian Biology, Volume 94, 2019. Pages
140-148. ISSN 1616-5047. https://doi.org/10.1016/j.mambio.2018.05.003
Marmesat E., Schmidt K., Saveljev A.P., Seryodkin I.V., A. Godoy J.A. Retention of functional variation despite extreme genomic erosion: MHC allelic repertoires in the Lynx genus// BMC Evolutionary Biology (2017) 17:158 DOI 10.1186/s12862-017-1006-z
Apollonio M., Belkin V., Borkowski J., Borodin O, Borowik T., Cagnacci F., Danilkin A., Danilov P., Faybich A., Ferretti F., Gaillard J., Hayward M., Heshtaut P., Heurich M., Hurynovich A., Kashtalyan A., Kerley G., Kjellander P., Kowalczyk R., Kozorez A., Matveytchuk S., & Milner J.M., Mysterud A., Ozoliņš J., Panchenko D., Peters W., Podgórski T., Pokorny B., Rolandsen C., Ruusila V., Schmidt K., Sipko T., Veeroja R., Velihurau P., Yanuta G. Challenges and science-based implications for modern management and conservation of European ungulate populations// Mamm Res (2017) 62:209–217 DOI 10.1007/s13364-017-0321-5
The content of heavy metals in phytomass of plants in natural habitats and habitats
subject to various degrees of anthropogenic influence was estimated by a method of
atomic-absorption spectrometry. Concentration of manganese in phytomass of plants in
polluted habitats changes from 46.42 to 158.94 mg/kg of dry matter. At semi-aquatic
and water plants of polluted habitats concentration of manganese in green mass is on
average 111.05...190. 34 mg/kg. Average concentration of copper for plants of polluted
habitats is 3.47...5.96 mg/kg, for background — 3.27 mg/kg. Plants of semi-aquatic
habitats are not inclined to copper accumulation. All terrestrial and semi-aquatic plants
in technogenic territories contained iron in insignificant amount. Statistically significant
invert correlation between content of iron and such metals, as cadmium, manganese,
lead, and magnesium is noted. The value of zinc concentration in plants of technogenic
habitats varied from 21.12 to 44.01 mg/kg of dry matter, slightly exceeding that at
plants of background habitats (28. 75 mg/kg). Zinc content in phytomass of water plants
is twice lower than of terrestrial plants (17.05...19.51 mg/kg). Concentrations of nickel
in plants of background and technogenic habitats are close - 1.93 and 1.69 mg/kg of
dry matter accordingly. Concentration of cadmium in plants from technogenic habitats
exceeds maximum allowable concentration (MAC). On the average for plants of
polluted habitats the lead content is 1.11...1.15 mg/kg, for background - 0.6 mg/kg.
Average concentration of chrome in phytomass changes almost 50 times - from 0.21
mg/kg to 11.56 mg/kg.
subject to various degrees of anthropogenic influence was estimated by a method of
atomic-absorption spectrometry. Concentration of manganese in phytomass of plants in
polluted habitats changes from 46.42 to 158.94 mg/kg of dry matter. At semi-aquatic
and water plants of polluted habitats concentration of manganese in green mass is on
average 111.05...190. 34 mg/kg. Average concentration of copper for plants of polluted
habitats is 3.47...5.96 mg/kg, for background — 3.27 mg/kg. Plants of semi-aquatic
habitats are not inclined to copper accumulation. All terrestrial and semi-aquatic plants
in technogenic territories contained iron in insignificant amount. Statistically significant
invert correlation between content of iron and such metals, as cadmium, manganese,
lead, and magnesium is noted. The value of zinc concentration in plants of technogenic
habitats varied from 21.12 to 44.01 mg/kg of dry matter, slightly exceeding that at
plants of background habitats (28. 75 mg/kg). Zinc content in phytomass of water plants
is twice lower than of terrestrial plants (17.05...19.51 mg/kg). Concentrations of nickel
in plants of background and technogenic habitats are close - 1.93 and 1.69 mg/kg of
dry matter accordingly. Concentration of cadmium in plants from technogenic habitats
exceeds maximum allowable concentration (MAC). On the average for plants of
polluted habitats the lead content is 1.11...1.15 mg/kg, for background - 0.6 mg/kg.
Average concentration of chrome in phytomass changes almost 50 times - from 0.21
mg/kg to 11.56 mg/kg.
Видовое разнообразие пресноводных моллюсков бассейна р. Чепца. ― Т. Г. Шихова. ― Проанализирован видовой состав моллюсков бассейна р. Чепца – крупнейшего притока Вятки (бассейн Средней Волги). Список включает 69 видов 13 семейств. Фоновые виды в русле Чепцы – Crassiana crassa, Tumidiana tumida, Рseudanodonta complanata, Rivicoliana rivicola, Sphaerium corneum, Amesoda solida, Pisidium amnicum, Cincinna piscinalis, Viviparus viviparus. В стоячих и слабопроточных водоемах обычны: эврибионтные гастроподы Cincinna piscinalis, Bithynia tentaculata, Lymnaea ovata, L. fontinalis, Anisus vortex, A. acronicus и фитофилы Lymnaea stagnalis, L. fragilis, L. psilia, Acroloxus lacustris, Planorbarius corneus, Planorbis planorbis. Редкие виды Чепецкого бассейна – Lacustrina dilatata, Pisidium inflatum, Dreissena polymorpha, Lymnaea intermedia, Armiger crista. Основу малакофауны составляют европейские (34%) и евро-западносибирские виды (30%).
Ключевые слова: пресноводные моллюски, бассейн р. Чепца, Кировская область, Удмуртия.
Ключевые слова: пресноводные моллюски, бассейн р. Чепца, Кировская область, Удмуртия.
Bull J.K. , Heurich M., Saveljev A. P. , Schmidt K., Fickel J., Förster D.W. 2016. The effect of reintroductions on the genetic variability in Eurasian lynx populations: the cases of Bohemian–Bavarian and Vosges–Palatinian populations// Conservation Genetics : 1-9. doi:10.1007/s10592-016-0839-0
Niedziałkowska M., Hundertmark K. J. , Jędrzejewska B., Sidorovich V.E., Zalewska H., Veeroja R., Solberg E.J., Laaksonen S., Sand H., Solovyev V.A., Sagaydak A., Tiainen J., Juškaitis R., Done G., Borodulin V.A., Tulandin E.A., Niedziałkowski K. 2016. The contemporary genetic pattern of European moose is shaped by postglacial recolonization, bottlenecks, and the geographical barrier of the Baltic Sea// The Linnean Society of London, Biological Journal of the Linnean Society, 2016, 117, 879–894.
Cabria M.T., Gonzalez E.G., Gomez-Moliner B.J., Michaux J.R., Skumatov D., Kranz A., Fournier P., Palazon S., Zardoya R. Patterns of genetic variation in the endangered European mink (Mustela lutreola L., 1761)// BMC Evolutionary Biology 2015, 15:141 DOI 10.1186/s12862-015-0427-9
Matyukhina D.S., Miquelle D.G., Murzinc A.A., Pikunovc D.G., Fomenkod P.V., Aramilev V.V. , Litvinov M.N., Salkina G.P., Seryodkin I.V., Nikolaev I.G., Kostyria A.V., Gaponov V.V.,Yudin V.G., Dunishenko Y.M., Smirnov E.N., Korkishko V.G., Jorgelina Marino. Assessing the Influence of Environmental Parameters on Amur Tiger Distribution in the Russian Far East Using a MaxEnt Modeling Approach// Achievements in the Life Sciences 8 (2014) 95–100
Glushkov V.M. IMPROVING MOOSE POPULATION ESTIMATES IN RUSSIA: ACCOUNTING FOR DISTANCE BETWEEN RESIDENTIAL AREAS AND TRACK SIGHTINGS// ALCES. 2013. Vol. 49: 149–154