Иммунный статус 10 - дневных щенков песца, полученных от вакцинированных против сальмонеллеза самок

Бельтюкова З.Н., Домский И.А.

ГНУ Всероссийский научно-исследовательский институт охотничьего хозяйства и звероводства им. проф. Б.М. Житкова РАСХН (610000, г. Киров, ул. Энгельса, 79, Россия)
Тел. (8332) 64-78-57; факс (8332) 64-72-26; e-mail vniioz @ mail ru

До настоящего времени перед звероводством стоит важная и сложная задача - снижение перинатальной смертности и получение здорового потомства пушных зверей. С этой целью важно тщательное изучение и правильная оценка причин и характера патологических процессов. Одно из направлений повышения резистентности организма пушных зверей к инфекционным болезням — это повышение иммунного статуса самок основного поголовья пушных зверей и полученного от них молодняка (В.С. Слугин, 2003).

Знание механизмов противомикробной защиты организма особенно необходимо при отработке оптимальных схем иммунопрофилактики с учетом промышленной технологии в звероводстве. Иммунологический статус при формировании стада животных при этом имеет решающее значение. В целях создания напряженного иммунитета, защищающего животных от заболевания инфекционными болезнями, разработана новая схема иммунизации, обеспечивающая максимальную защиту молодняка пушных зверей от сальмонеллезной инфекции, начиная с внутриутробного развития.

Цель исследований - совершенствование специфической профилактики сальмонеллеза у песцов для создания напряженного иммунитета, повышения продуктивности зверей и снижения потерь молодняка.

Работа выполнена в лаборатории ветеринарии ГНУ Всероссийского научноисследовательского института охотничьего хозяйства и звероводства им. проф. Б.М. Житкова, в ООО зверохозяйстве «Вятка», в ООО «Научно-производственное объединение «Пушнина» и зверохозяйстве «Нолинское» Кировской области.

Материал и методы. В опытах по изучению специфического иммунитета использованы песцы вуалевые и серебристые, в т.ч.: молодняк песцов в возрасте 10 дней (16 голов); взрослые племенные самки песцов, вакцинированные за месяц до гона (80 голов); беременные самки, вакцинированные во второй половине беременности (80 голов).

Аттенуированные вакцинные штаммы, используемые в работе (штамм Salmonella tiphymurium №3; штамм Salmonella dublin №6; штамм Salmonella cholerae suis №9), депонированы в России и получены из ВГНКИ ветеринарных препаратов для иммунизации животных и приготовления опытных и опытно – промышленных серий вакцины.

Поствакцинальный иммунный ответ у вакцинированных животных изучали в течение месяца с помощью биохимических, иммунологических и статистических методов. Для этого у песцов кровь брали из поверхностной плюсневой вены бедра задней конечности до начала опытов и через 7, 14, 21 и 28 дней после введения биопрепарата.

<u>Биохимические методы.</u> Определение фракций белка осуществлялось нефелометрическим методом (Антонов Б.И., 1991).

<u>Бактериологические методы.</u> Применялись общепринятые в бактериологии приемы работы (Антонов Б.И., 1986), а именно: посевы культур на питательные среды для их выращивания, определение чистоты роста, идентификации штаммов микроорганизмов, посевы на специальные среды для изучения биохимических свойств штаммов сальмонелл,

определения устойчивости их к стрептомицину и определения концентрации микробных клеток.

<u>Статистические методы</u>. Статистическая обработка массовых цифровых материалов проводилась на персональном компьютере с использованием статистической программы «Microsoft® Excel 98». Использовали общепринятые методы математической статистики, оценку достоверности некоторых статистических выборок показателей производили по критерию Стьюдента (Лакин Γ . Φ ., 1981).

Определение среднегеометрического титра антител в сыворотке крови вакцинированных зверей производили по Лярски (Сюрин В.Н. с соавт., 1986).

<u>Иммунологические методы исследования.</u> Реакцию агглютинации использовали для изучения динамики образования специфических антител-агглютининов к возбудителям сальмонеллеза (Антонов В.Я., Блинова П.Н., 1971). Фагоцитарную активность нейтрофилов вакцинированных животных определяли в опсоно-фагоцитарной реакции (Лабинская А.С., 1978). Определение бактерицидной активности сыворотки крови проводили по методу Кузьминой Т.А. и Смирновой О.В. (1966). Для определения бактерицидной активности сыворотки крови и опсоно-фагоцитарной активности нейтрофилов (Лабинская А.С., 1978) в качестве тест-микроорганизма был использован полевой вирулентный штамм Sal. typhimurium, что выгодно охарактеризовало специфичность и направленность выявленных изменений. Кровь использовали для выделения лимфоцитов (Груздев К.Н., 1984) и их популяций (Jondall M., Holm J., Wodzell H., 1972; Bianco C., Prilrick R., Nussenzweig V.A., 1972).

Результаты исследования. Вакцинацию самок песца против сальмонеллеза провели в 2 этапа. Первоначально 40 самок иммунизировали парентерально за 30 дней до гона вакциной ассоциированной сухой против сальмонеллеза и чумы плотоядных согласно наставлению по её применению. Затем 20 беременных самок, с целью повышения у них напряженности иммунитета и обеспечения иммунной защиты новорожденных щенков, дополнительно иммунизировали за 2 недели до предполагаемого щенения вакциной против сальмонеллеза для орального применения согласно временному наставлению по её применению. Каких-либо поствакцинальных осложнений (угнетение, отказ от корма, проявления жажды и нарушения пищеварения) с момента вакцинации и до щенения отмечено не было. Все самки ощенились своевременно и без осложнений.

Для изучения иммунного статуса у щенков, полученных от самок, вакцинированных против сальмонеллеза по разным схемам, из пометов изъяли по три щенка в возрасте 10 дней и провели исследования, характеризующие их иммунный статус, сформированный за счет материнского и колострального иммунитета. Для этого были созданы следующие опытные группы животных:

- 1. Щенки, полученные от самок, вакцинированных только до гона;
- 2. Щенки, полученные от самок, вакцинированных дополнительно за 2 недели до щенения;
 - 3. Щенки, полученные от невакцинированных матерей (контроль).

Таблица 12 - Показатели иммунного статуса 10-дневных щенков, полученных от дополнительно вакцинированных перед щенением самок

При анализе полученных результатов (таблица 12) обращает на себя внимание достоверно повышенный уровень показателей гуморального иммунитета в опытной группе. Содержание γ –глобулиновой фракции белка сыворотки крови у животных этой группы на 42,2 % выше, чем у щенков контрольной группы. Содержание общего белка во всех группах опытных зверей равно 48,3 — 52,7 г/л и какой-либо закономерности и соотношения с изменениями содержания белковых фракций у разных групп зверей не прослеживается. Показатель титра антител-агглютининов в крови щенков опытной группы также значительно выше (на 57,45

%) по сравнению с титром антител в крови животных контрольной группы. Бактерицидная активность сыворотки крови у щенков опытной группы на 8,28 % выше, при этом разница показателей с контрольной группой является также достоверной.

Необходимо отметить, что фагоцитарная активность нейтрофилов у животных опытной группы незначительно выше (разница показателей не достоверна). Уровень активности этого клеточного фактора резистентности у 10-дневных щенков обеих групп существенно не отличается.

Исследования количества лимфоцитов и их популяций у 10-дневных щенков показали достоверное увеличение количества лимфоцитов в крови животных опытной группы. При этом у них отмечено увеличение общего количества розеткообразующих клеток (таблица 13).

Таблица 13 – Изменение количества лимфоцитов и их популяций у 10-дневных песцов

	Показатели иммунитета					
Опытные группы	К-во		К-во	T-	К-во	B-
зверей	лимфоцитов,		лимфоцитов		лимфоцитов	
	тыс./ мкл		тыс./ мкл		тыс./ мкл	
	M±m	P	M±m	P	M±m	P
Щенки от	6,73±0	<0,0	2,18±0,4	<0,0	0,69±1	<0,00
вакцини-рованных	,95	1	3	01	,19	1
самок						
Контроль, щенки	3,1±0,		$0,86\pm0,1$		0,23±0	
ОТ	4		9		,02	
невакцинированных						
самок.						

Показатели клеточных факторов иммунитета на лимфоцитарном уровне полностью соответствуют результатам изучения гуморальных факторов колострального иммунитета животных.

Таким образом, иммунный ответ материнского организма оказал значительное влияние на формирование напряженного колострального иммунитета к сальмонеллезу у потомства.